The new high-resolution Porsche LED main headlights with HD matrix beam offer a high-resolution light distribution up to twice as bright than previous systems.
Porsche has developed the light technology of the next generation with its new high-resolution HD matrix technology. The core element of the innovation created in collaboration with partners is a chip that combines over 16,000 individually controllable micro-LEDs onto the surface area the size of a thumbnail. Of these LED chips, two are utilised for each headlight – four per vehicle. The headlights with HD matrix technology therefore offer a high-resolution light distribution up to twice as bright on a surface four times larger than previous top-notch systems. Baby Music Toy

The driver benefits from the highly flexible light that the new development makes possible thanks to extremely homogeneous illumination. In addition, there are innovative functions such as lane illumination, construction and narrow-lane light and adaptive motorway high-beam lights. The high-performance high beam turns night into day at a distance of up to 600 metres. A new non-dazzling high beam function is used for oncoming vehicles: large areas to the right and left of the anti-dazzling gap become significantly brighter.
The new HD matrix technology adds yet another highly efficient component. Because the HD matrix headlights only activate the pixels that are actually needed at any given moment, they consume considerably less energy that other high-resolution systems, while the amount of light remains the same.
In addition to four-point daytime driving lights and static cornering lights, the new Porsche headlight includes two of the new HD matrix modules and two bi-functional modules for courtesy lighting and the auxiliary high beam. These four main light sources are arranged in a four-point design characteristic of the brand. The previous top headlight from Porsche, by contrast, features four courtesy modules and a central Matrix module in 84-pixel technology.
The new HD matrix technology also stands apart in terms of design: for the first time, the characteristic Porsche four-point headlight graphics of the daytime running lights can also be seen at night when the new system is used – with both low and high beams. The HD matrix headlights will be introduced successively in different model lines with identical module technology but adapted designs. In the development process, Porsche submitted over 25 patents for the innovative technology.
The new technology must unite different, and sometimes contradictory, requirements in a single system. The aim is to distribute all light functions among four units per headlight for design reasons. Nonetheless, the individual sources of light should still combine in a way that provides homogeneous and powerful illumination at the same time. Pre-design simulations were used to analyse which overall system design would best meet all requirements – including those of customers. As a result, Porsche opted for the new and efficient HD matrix LED technology with 16,384 pixels per module rather than the maximum resolution that is technically feasible.
The design of the headlight is clearly structured. Four almost squarely arranged light modules, each complemented by a narrow daytime running light strip above the module, trace the brand’s characteristic four-point design – by day and by night. The two upper bi-functional modules are identical and provide the courtesy lighting and auxiliary high beam with three LEDs each.
The heart of the new HD matrix technology is the two lower light units. Each features an identical LED array with integrated LED driver (ASIC) that generates an unprecedented high-resolution luminous flux in an area of just 12.8 millimetres by 3.2 millimetres. The system controller – comparable to a powerful graphics card – not only activates but also controls the brightness of each of the 16,384 individual light-emitting diodes per LED array in 1,024 steps. Different lenses, each with specifically ground optical glass, complete the two HD modules.
The lenses produce different illumination angles. The wide-angle lens of the outer HD matrix module’s ‘illumination’ covers an angle of 40 degrees of width by ten degree of height. The inner ‘Performance’ HD matrix module with telephoto lens radiates the light at 20 degrees by five degrees. Its illumination is therefore only half as high and half as wide, but significantly brighter. The light distributed by the two HD modules overlap in the centre. The new headlight thereby combines wide illumination with high intensity in the central area.
The performance leap in light technology can be attributed to this efficient generation of light and the combination of the two HD matrix modules with the two bi-functional modules. With a total of 32,768 individually controllable pixels per headlight, the HD matrix modules generate direct high-resolution light. Only the light that is actually required is generated. This is why it is known as active matrix light generation.
The HD matrix light illuminates the entire 40-degree horizontal and ten-degree vertical range with a luminous flux of over 1,400 lumens, thereby generating one of the largest and brightest high-resolution illumination areas. It covers the entire high beam range and begins just in front of the vehicle. The light can be distributed in any way within this area and this flexibility makes it possible to improve existing functions and introduce new ones – always with the aim of offering the driver the best possible visibility in any situation.
High beam with auxiliary high beam (high-performance high beam) If the system does not detect any vehicles driving ahead or oncoming vehicles, and the automatic high beam is active, the HD matrix modules switch from dipped beam to high beam, and the auxiliary high beam of the upper bi-functional modules is automatically switched on. This ensures an increase in the beam length and increases the performance of the high beam. More than 600 metres if the road is illuminated.
Non-dazzling high beam with new function If the camera detects a vehicle ahead or an oncoming vehicle, the auxiliary high beam is deactivated and the vehicle is selectively masked out by switching off the corresponding pixels of the HD matrix modules. The energy that this frees up is converted into additional, functional HD light. The full width of the available HD light is used to optimise the illumination of the non-dazzling high beam and to improve the driver’s visibility – without dazzling other drivers. When anti-dazzling is activated, the amount of light from the HD matrix module to the right and left of the anti-dazzling gap is doubled, resulting in significant brightening of the remaining high beam range.
Lane illumination This function is used for better illumination of the vehicle’s own lane in the form of a light carpet. The lane between the road markings becomes significantly brighter. And this regardless of the vehicle’s position in the lane. Whether the vehicle is further to the right, further to the left or in the middle – the light carpet adheres to the road markings as if it were a magnet. The function is activated exclusively on motorways or comparable roads. It enables early detection of hazardous objects and reduces lane changes by other, less attentive drivers into the vehicle’s own lane. In the case of deliberate lane changes, the light carpet is briefly widened to cover both lanes when the marking is crossed, before subsequently illuminating only the new lane more brightly once the lane change is complete.
Construction and narrow-lane light When construction zones or narrow areas are detected, the light carpet is automatically reduced to the same width as the vehicle, including mirrors, to brighten the lane and thus make it visible to the driver. This visual support enables drivers to better assess their position in the narrow lane as well as overtaking manoeuvres. Steering and speed corrections are demonstrably reduced, with lane keeping and road safety being enhanced as a result.
Adaptive motorway high beam On motorways and comparable high-speed roads, the control system ensures the best possible illumination of the driver’s lane while also optimally adapting the light distribution to the conditions on the motorway. The illumination is cut off with a soft transition towards the median strip, which prevents drivers in the oncoming lane being dazzled.
Animation as greeting and send-off When locking and unlocking the vehicle, the dipped beam of the four-point headlights ensures visibility and safety in front of and around the vehicle. The vehicle sends the driver off with a discreet animation: the HD matrix modules generate two headlight graphics in a four-point design that is characteristic of the brand and which sweep horizontally over any walls opposite or garage doors, for example, before going out. The light system then activates the animation in reverse order when the parked vehicle is unlocked and the driver’s door is opened.
Spokesperson Research and Development and Technology Communications
During Art Basel in Miami, Porsche is unveiling its first collection of non-fungible tokens (NFT).
The vehicles of the future will be constantly connected, and satellites could play an important role in this.
Which technical innovations yield human progress? A guest article by Rafael Laguna de la Vera and Thomas Ramge.
Some questions just have to be asked. Here are the answers — delivered with an amusing twist.
© 2022 Dr. Ing. h.c. F. Porsche AG.
*Data determined in accordance with the measurement method required by law. As of 1 September 2018 the Worldwide Harmonised Light Vehicles Test Procedure (WLTP) replaced the New European Driving Cycle (NEDC). Due to the more realistic test conditions, the fuel/electricity consumption and CO₂ emission values determined in accordance with the WLTP will, in many cases, be higher than those determined in accordance with the NEDC.
Currently we are still obliged to provide the NEDC values, regardless of the type approval process used. The additional reporting of the WLTP values is voluntary. As all new cars offered by Porsche are type approved in accordance with the WLTP, the NEDC values are therefore derived from the WLTP values. To the extent that the values are given as ranges, they do not relate to a single, individual car and are not part of the offer. They are intended solely as a means of comparing different types of vehicles. Optional equipment and accessories (attachments, tyre formats etc.) can change relevant vehicle parameters such as weight, rolling resistance and aerodynamics and, along with weather and traffic conditions and individual handling, can affect the fuel/electricity consumption, CO₂ emissions, range and performance figures of a car.
You can find more information on the difference between WLTP and NEDC at www.porsche.com/wltp.
Further information on the official fuel consumption and official, specific CO₂ emissions of new passenger cars is available in the "Guidelines on fuel consumption, CO₂ emissions and power consumption of new passenger cars". new passenger car], available free of charge from all sales outlets and from Deutsche Automobil Treuhand GmbH (DAT).
** Important information about the all-electric Porsche models can be found here.

Musical Module 1. All information offered on Porsche Newsroom, including but not limited to, texts, images, audio and video documents, are subject to copyright or other legislation for the protection of intellectual property. They are intended exclusively for use by journalists as a source for their own media reporting and are not intended for commercial use, in particular for advertising purposes. It is not permitted to pass on texts, images, audio or video data to unauthorised third parties. 2. All logos and trademarks mentioned on Porsche Newsroom are trademarks of Dr. Ing. h.c. F. Porsche AG (hereinafter: Porsche AG), unless otherwise stated. 3. All contents of Porsche Newsroom are carefully researched and compiled. Nevertheless, the information may contain errors or inaccuracies. Porsche AG does not accept any liability with respect to the results that may be achived through the use of the information, in particular with respect to accuracy, up-to-dateness and completeness. 4. Insofar as Porsche Newsroom provides information concerning vehicles, the data refers to the German market. Statements concerning standard equipment and statutory, legal and tax regulations and repercussion are valid for the Federal Public of Germany only. 5. With respect to the use of Porsche Newsroom, technical faults such as, delays to news transmission, cannot be ruled out. Porsche AG does not accept any liability for any resulting damage. 6. Insofar as Porsche Newsroom provides links to the internet sites of third parties, Porsche AG does not accept any responsibility for the content of the linked sites. On using the links, the user leaves the Porsche AG information products. 7. In agreeing to these rights of use, the user shall be obliged to refrain from any improper use of Porsche Newsroom. 8. In the event of improper use, Porsche AG reserves the right to block access to Porsche Newsroom. 9. Should one or more provisions of these terms and conditions be or become invalid, this shall not affect the validity of the remaining provisions.